TOPCLAUSTM - DESTRUCTION OF SO₃ IN CLAUS THERMAL REACTORS

TOPSOE

José Vicente Revilla Perez & Morten Thellefsen TOPSOE

The TopClaus $^{\mathsf{TM}}$ process – a novel combination of well-known technologies

- > 99.97 % sulfur recovery
- Up to 10% lower • process gas flow in Claus plant
- Complete oxidation • of sulfur compounds, H₂ and CO in WSA plant
- Very high energy • recovery

6° CONGRESO

LATINOAMERICANO Y DEL CARIBE DE **REFINACIÓN**

Fate of H₂SO₄ in Claus thermal reactor – fast thermal decomposition into basic Claus compounds

TOPSOE

H₂SO₄ destruction in Claus process gases, experimental work and theoretical modelling

H₂SO₄ VAPOR DESTRUCTION EXPERIMENTS:

ACID GAS FEED: 55 VOL% H_2S , 36 VOL% CO_2 , 1.5 VOL% CH_4 , 7.5 VOL% H_2O REACTOR TEMPERATURE : 1050 °C

H ₂ SO ₄ feed	6 %	6 %	10 %	15 %
Residence time	1 sec	0.5 sec	1 sec	1 sec
H ₂ SO ₄ destruction	> 99.95 %	> 99.95 %	> 99.98 %	> 99.98 %

 $6 \% H_2SO_4$ of total sulfur feed correspond to ~15,000 ppmv H_2SO_4 in the feed gas Normal residence time in Claus thermal reactor is 1-2 sec H_2SO_4 outlet concentrations below quantification limit, estimated to ~ 10 ppmv

Theoretical modelling of H₂SO₄ destruction showed complete destruction within 0.002 sec.

 H_2SO_4 destruction in the presence of BTX – interactions and/or side reactions?

H₂SO₄ VAPOR DESTRUCTION EXPERIMENTS:

ACID GAS FEED: 55 VOL% H₂S, 36 VOL% CO₂, 1.5 VOL% CH₄, 7.5 VOL% H₂O H₂SO₄: 6 % OF TOTAL SULFUR FEED BTX: 2000 PPMV (4 BENZENE: 3 TOLUENE: 1 XYLENE) **REACTOR TEMPERATURE : 1050 °C RESIDENCE TIME : 1 SEC**

Temperature	1050 °C	950 °C
BTX destruction	99.5 %	85 %
H ₂ SO ₄ destruction	> 99.95 %	> 99.95 %

BTX destruction similar to H_2SO_4 free conditions.

Unconverted BTX was primarily Benzene

 H_2SO_4 outlet concentrations below quantification limit, estimated to ~ 10 ppmv. Inlet H_2SO_4 concentration ~15,000 ppmv

 H_2SO_4 destruction in the presence of NH_3 – interactions and/or side reactions?

H₂SO₄ VAPOR DESTRUCTION EXPERIMENTS:

ACID GAS AND SWS GAS FEED: 63 VOL% H_2S , 19 VOL% H_2O , AR BALANCE H_2SO_4 : 6 % OF TOTAL SULFUR FEED NH₃: 13,000 PPMV RESIDENCE TIME : 1 SEC

Temperature	1250 °C	1100 °C
NH ₃ destruction	> 99.95%	96.4 %
H ₂ SO ₄ destruction	> 99.95%	99.4 %

 NH_3 destruction similar to H_2SO_4 free conditions H_2SO_4 outlet concentrations below quantification limit at 1250 °C, estimated to ~ 10 ppmv. Inlet H_2SO_4 concentrations ~15,000 ppmv Incomplete H_2SO_4 destruction at 1100 °C could be a result of chemical reactions in the sampling system in the presence of unconverted NH_3

TOPSOE

Conclusions: H₂SO₄ is quickly destroyed in the TopClaus[™] process and will not effect the Claus chemistry

COMPLETE H₂SO₄ DESTRUCTION AT INDUSTRIAL CLAUS REACTION FURNACE CONDITIONS

- BTX DESTRUCTION UNAFFECTED BY PRESENCE OF H₂SO₄ •
- NH₃ DESTRUCTION UNAFFECTED BY PRESENCE OF H₂SO₄

TOPCLAUS[™] PROCESS

•

- NOVEL COMBINATION OF WELL-KNOWN CLAUS AND WSA TECHNOLOGIES •
- **DEVELOPED IN COOPERATION WITH COMPRIMO** •
- > 99.97 % SULFUR RECOVERY •
- H₂SO₄ IS AN O₂ CARRIER, REDUCING NEED FOR AIR •
- **UP TO 10% LOWER PROCESS GAS FLOW FOR SAME CAPACITY**
- **HIGH THERMAL EFFICIENCY**

QUESTIONS? Contact José or Morten read IAPG paper Visit www.topsoe.com

José Vicente Revilla Perez, Licensing Manager JVRP@TOPSOE.COM cell phone +54 91126430117

Morten Thellefsen, Technology Manager for WSA, SNOX[™] and TopClaus[™] MFN@TOPSOE.COM cell phone +45 22754380

