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RESUMEN

El objetivo de este trabajo es ilustrar cómo los métodos avanzados de análisis de múltiples variables 
y aprendizaje automático son útiles para la mejora económica de la productividad de pozos en el 
intervalo Cocina de la Formación Vaca Muerta, Cuenca Neuquina. Las metodologías basadas en 
ciencia de datos brindan la oportunidad de aumentar la eficiencia y extraer más detalles de extensas 
bases de datos. 
Todas las decisiones de campo y optimización se toman en presencia de incertidumbre. Debido a las 
incertidumbres inherentes al campo físico y la escasez de puntos de control, proponemos métodos 
basados en datos para evaluar el impacto de diferentes parámetros en la producción. El flujo de 
trabajo se compone de análisis de datos junto con métodos de aprendizaje automático supervisados 
y no supervisados. 
Primero: Se implementa una fase de análisis espacial, mejorando el rigor estadístico de los parámetros 
de entrada para la predicción usando aprendizaje automático al tiempo que se respeta el contexto 
espacial de los datos del subsuelo. El flujo de trabajo incluye identificación de anomalías espaciales, 
detección, valores atípicos de datos espaciales, problemas de calidad de datos y modelado de 
tendencias óptimas.
Siguiente: Un análisis de múltiples variables en la zona de perforación de interés. El modelo usa 
datos solo de este intervalo con el objetivo de determinar las características de alto impacto y en qué 
rangos de valor estas características gobiernan la productividad del pozo. Cuantificar y clasificar la 
importancia de todas las características geológicas, geofísicas y de ingeniería disponibles permite 

301

11º Congreso de Exploración y Desarrollo de Hidrocarburos
Simposio de Desarrollo de Vaca Muerta

IAPG • Instituto Argentino del Petróleo y del Gas



IAPG  •  Instituto Argentino del Petróleo y del Gas

302 Simposio de Desarrollo de Vaca Muerta

realizar pruebas iterativas rápidas de diferentes diseños de producción. Los modelos basados en 
datos se calibran con modelos basados en la física (Cruz, et al 2021 y presentación de colegas de 
Equinor en CONEXPLO22 por Arief et al).
Finalmente: Una predicción usando aprendizaje automático (ML) para pozos futuros vinculada a un 
modelo económico que proporciona parámetros comerciales como: tiempo de recobro de inversión 
para cada pozo y cobertura de gastos en un corto plazo. El modelo de pronóstico de aprendizaje 
automático utiliza todo el conjunto de datos de producción de la Formación Vaca Muerta del 
Capítulo IV como análogo a la predicción de producción.  El objetivo de este paso final es modelar 
la optimización económica produciendo un pronóstico para cada pozo para un plan de desarrollo, 
brindando la capacidad de evaluar múltiples escenarios y cientos de iteraciones. Consulte la Figura 1: 
Flujo de trabajo completo basado en datos.

INTRODUCTION 

We propose a data driven, end-to-end workflow that integrates all the data.  Geological and 

geophysical data, with spatial analytics applied to honor the spatial context of the data. This is 

combined with engineering, production, financial and cost data as a means of extending the 

current modeling capabilities and enhancing the current decision workflow practices. 

The workflow facilitates understanding influential drivers on well productivity, understood 

by using Multivariate analysis and the impact of geospatial variations, what happens when we 

move away from a known well bore? This is understood using semi-variograms in 2D modeling 

(Optimal trend model) and semi-supervised Machine learning clustering techniques to generate 

facies maps, for a consistent reservoir quality comparison across the basin of all G&G properties 

combined to define facies classes. (Figure 5).

The aim of this is gaining insight into well completion optimization. and knowledge for 

well spacing considerations- We can also gain knowledge on what impacts payback time (time 

Figure 1. Data analytics workflows for optimization of unconventional asset. Novel spatial analytics techniques, 
handling the G&G input data -Clustering Techniques-Multivariate analysis: What’s driving production? Testing 
completion scenarios: Machine learning multi scenario forecasting and well payback model.
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to 100% return on investment). Multivariate analysis gives insight, to the impact of engineering 

and geological variables over time, e.g., what was significant in the first years and what drives 

production in the later years of field development (Figure 10), assisting with optimization of 

shortest well payback time and development sequences. 

Our focus is data-driven characterization of the subsurface. We build practical automated 

workflows for subsurface data analysis and predictive machine learning. 

Data science capabilities allow our physics-based models to be augmented, with spatial 

analytics, non-supervised, supervised machine learning techniques, and multivariate analysis. 

Unconventional dynamic systems pose the challenge of nonlinearity of properties and high 

dimensionality within the data sets, the many properties also have noise and are stochastic of 

nature. Machine learning is a good technique for overcoming these challenges as it supports 

prediction and inference in multivariate and complex data sets. Our data driven models are 

calibrated to physics-based models.  In the paper, Cruz, et. al., 2021 physics-based, and data-

driven models were seen as complementary to each other’s short comings. The final physics-based 

models are better equipped, compared to data-driven models, to predict behaviors in situations 

where large amounts of spatially distributed data are not available. Physics-based models can 

be used to answer more detailed and granular completions questions i.e., what is the optimal 

clusters spacing and number of perforations per cluster? (Arief et. al., 2022) However, physics-

based models are generally time and computationally intensive and, depending on the degree of 

reservoir heterogeneity in the studied basin/reservoir, may only be applicable to a small region 

near the studied well or pad. Spatially aware data-driven models allow for insight away from the 

small region of detailed data. 

Combining the physics-based and data-driven modeling provide an opportunity to bridge 

the data and physical understanding gaps to improve accuracy of production forecasts and 

completions optimization. Digital driven automation of forecasting models tackles the issue of 

bias in forecasting to avoid misallocation of capital. Data-driven forecasting generates prediction 

updates at speed. 

The vehicle for automated workflow is a scripting / coding solution. When you automate 

workflows there are many gains: 

1. All data types can be analyzed and integrated, all geological and geophysical properties 

(geomechanical, geochemical) not just STOOIP inputs. Completion parameters, cost 

data, and economic data. If all this information is taken out of context, we could mislead 

decision making / field optimization. 

2. Size of data set is not an obstacle; 100-1,000 wells can be analyzed. Scaling information 

input means we can learn from all (currently approximately 1,200) horizontal producers 

in the Vaca Muerta Formation. Legacy software does not allow for this level of data 

integration. 
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3. Automation leads to efficiency: multiple scenarios can be run fast & repeatable, varying 

completion parameters, costs & oil price, outputting forecast iterations fast and testing for 

optimization. An obvious gain is a higher resolution of information, a forecast for every 

well in the development plan versus one type-curve per area. Geoscientists and engineers 

can focus simulation time on scenarios that add value. 

4. Multiple scenarios facilitate an uncertainty centric workflow, representing a span of possible 

outcomes rather than a few single scenarios. Figure 2 demonstrate the degree of flexibility, 

in evaluating optimal completions scenarios. For the license area in figure 2, thirteen 

different completion scenarios where tested, and a predicted forecast generated for every 

well in the development plan, these scenarios can be compared, figure 2 also shows the 

resulting 12 months cumulative production if the worst performing completion for each 

well is chosen (image on the left) and the resulting 12 months cumulative production if 

the best performing completion is selected for each well from the 13-scenario combination 

(Figure on the Right). 

 

The workflow is broken into three major phases 

1.  Spatial analytics: 

This step improves that statistical rigor of predictive ML models: 

• 1A: Optimal Trend modeling workflow: 

 Removes the disconnect of geological and geophysical (G&G) parameters variability from 

engineering to better honor the spatial context, autocorrelation and variance of G&G 

Figure 2.Illustrates the flexibility of the automated workflow13 completion scenarios where run on the 
reservoir interval of the study area, resulting in a production forecast for every well in the development 
plan , the image shows the 12 months cum production result from a mix of the 13 completion in the 
lowest/ minimum 12 month cum production attained, image on the left, and the completion scenarios 
for each well that resulted in the maximum 12 month cum production prediction image on the right.
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properties. 2D models of the geological properties are generated using GeoModeling 

principles such as semi-variograms and sequential gaussian simulation. 

• 1B: KNN (k-Nearest Neighbors algorithm) a clustering analysis for the interval of interest 

across the whole basin. Consistent reservoir quality comparison of all G&G properties 

combined to define facies classes.

• 1C: Fair test train split of spatial data in ML prediction models: 

 Model input data is spatially related, the workflow offers spatial aware data sets ready for 

predictive machine learning problems (Salazar, et al 2022).

2.  Multi Variate Analysis: (MVA): 

Understand bivariate and advanced multivariate correlations and collinearity. Ranking and 

properties significance of G&G and completion properties on well productivity at time intervals: 

e.g., 1 year & 3 years. The results of the MVA models are then calibrated to physics-based models 

(Cruz et al, 2021; Arief et al., 2022).

3.  Auto ML forecasting model & Value Model: 

Automated planned well production forecasting for every well in the development plan, with 

uncertainty, combining cost and economic models for single well payback & short-term measures 

of value outputs: breakeven, IRR & NPV. The automatic workflow allows for testing multiple 

completion scenario for well optimization all the way to economics. Completion scenarios are 

chosen using the results of the MVA analysis and subject matter expert input, this allows to output 

9-year production profile; 3 to 5 years predictions on cumulative production or 5 to 8 years 

decline curve analysis.

DATA INPUT 

Equinor’s inhouse regional database was used, petrophysical logs and basin analysis models. 

Production and completion data are from the Chapter IV public database. 

The Production and completion data was downloaded from the Argentinian Energy 

Department (AED) (Repositorio oficial del Equipo de datos del Ministerio de Energia y Mineria 

de la Republica Argentina). The github address is the following: https://github.com/datosminem/

produccion-de-petroleo-y-gas-por-pozo. 

Production wells from 2009 to present day with greater than 500m lateral length where used, 

approximately 730 wells. Equinor Petrophysical database included approximately 130 vertical 

pilot wells across the basin. 
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One target zone was analyzed in the MVA and Machine learning forecast and value model.

If proprietary data was used the model’s accuracy would improve, exact target zones of the 

production wells would be understood and insightful features such as number of clusters/ clusters 

spacing and well spacing could be calculated and added to the models. 

The MVA model had petrophysical data from an additional approximately 100 horizontal 

wells. The 2D modeling, optimal trend model, was generated for each petrophysical feature as 

input to the MVA model and Machine learning forecast and value model: G&G information 

sampled at the production well location from the model.

Table 1 shows the input properties to the data driven models. Of a total of 16 initial G&G 

parameters, 7 were rejected in the final models test and train phase, due to collinearity and/or data 

quality.

Table 1: G&G Properties used in Regional MVA model & ML Forecast 
& Value model Completion properties used in both models along with 
Actual monthly production volumes.

PHASE 1: SPATIAL ANALYTICS 

Several spatial analytics workflows that can be stand alone have been generated. The workflows 

used included an initial optimal trend modeling, KNN Clustering, fair train-test split of spatial 

data for ML models. 

Phase 1A - Optimal trend model 

The objective for the development of the optimal trend model is to address uncertainty 

of properties at unknown well locations and produce robust 2D models of G&G properties. 

Geological data present challenges for mapping; data paucity is dominant; presence of trends 

and spatial correlation need to be honored. Many off-the-shelf techniques assume the data are 

independent and identically distributed, but real geological phenomena present trends. Neglecting 
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the spatial continuity and inherent data paucity can produce unreliable uncertainty models and 

impair decision making. The optimal trend model is an innovative approach that combines data 

analytics, geostatistics, and optimization techniques to provide a workflow to analyze 2D datasets 

and produce models that are reliable to sample planed production well locations to feed G&G 

data into the Auto ML forecast prediction model (Salazar et al, 2022).

Spatial model includes multiple realizations to access uncertainty and the primary feature can 

be modeled and co-simulated with features that hold a strong correlation, this can include data 

from seismic surfaces, modelled surface results from basin models, or surfaces derived from well 

data. 

Methodology

Figure 3. Optimal Trend model workflow combines data analytics, geostatis-
tics and optimization techniques that provides a standalone workflow for 2D 
modeling from Salazar et al, 2022.

Step 1: Outlier Detection 

The workflow uses several algorithms to identify outliers for removal. Mahalanobis distance is 

used and a confidence interval to advise data points that could be outliers based on their location 

and a confidence interval, next an algorithm that classifies the samples three standard deviations 

away from the mean as outliers. Then the isolation forest algorithm which categorizes an instance 

as an outlier by measuring its predisposition to being isolated. Another algorithm used is the 

elliptic envelope that assumes the data follows a Gaussian distribution and measures the distance 

of the samples to the central samples to estimate their outlier degree. Finally, the last algorithm 

is the local outlier factor that uses the distances from each sample to its k-nearest neighbors to 
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compute a local density and classifies as outliers’ samples that have a smaller neighbor density 

than their k-nearest neighbors.

Step 2: Plotting the experimental semi variograms

This indicates the presence of trends in the data sets, the results are generation of directional 

semi-variograms and variogram maps, this will depict the trend for the feature being modeled and/

or co-simulated.

Optimization is in place using a Gaussian window and an evolutionary algorithm (Salazar, 

et al 2022), finding the optimal dimensions of the Gaussian window equivalent to the grid cells.

Step 3: Identify the direction, azimuth of maximum spatial continuity using a Bayesian 

optimization.

Step 4: Model the 2D variogram using evolutionary algorithms for optimization of the 

nugget effect, so the nugget effect and the variance contributions add up, to evaluate the 

goodness of the semi-variogram model fit. 

Step 5: Perform sequential Gaussian simulation: (SGS)  

SGS overcome limitations that exist with kriging, Kriged maps are deterministic and therefore 

incompatible with uncertainty analysis. (Jensen et al., 2000; Journal et al., 2000). SGS create 

stochastic realizations in reservoir modeling that reproduce the global distribution. 

Step 6: Co-simulation 

Understanding feature correlation allows for modeling of the subsurface with analysis of 

more than one feature. The cosimulation method used collocated cokriging to prioritize the 

reproduction of the primary feature’s histogram and variogram while maintaining the Pearson’s 

correlation coefficient with the collocated secondary feature. For cosimulation, the algorithm 

requires the realizations from the secondary feature, the variance reduction factor using Bayesian 

optimization is applied.

Results: Output diagnostics

The optimal trend workflow outputs are solving two of the major issues we encounter when 

working with geological or geophysical properties; first we either underestimate or overestimate 
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the property values and second the resulting uncertainties are too wide since the trends are still 

present in the data, violating the stationary assumption of the sequential gaussian simulation 

approach. The workflow automates the semi-variogram definition, model the trend in the data 

so we can remove it and correctly apply a sequential gaussian simulation on data that is now 

stationary. Furthermore, the uncertainty is within range and the realizations are now close to the 

input histogram. 2D uncertainty maps of the realizations are calculated for P10, P50, and P90 but 

more realizations can also be added as needed. Finally, a local probability of exceedance map is 

calculated to better visualize the risk and uncertainty for the property under analysis.

Phase 1B: KNN clustering analysis for the whole basin or the interval of interest 

Objective 

The objective of non-supervised machine learning technique of KNN clustering is to integrate 

all G&G properties data into a consistent comparable basis. This allows for regional reservoir 

quality analysis. The cluster results and, facies map, can be used in conjunction with the features 

of significance & transform plots, understanding influential drivers on well production, and the 

values at which they are significant, in the MVA part of the workflow, to understand the gross 

regional spatial variations of significant features. 

Figure 4.A & B Outputs from the optimal trend model of Porosity. A. Maps with trend overfitting 
the property (realizations fail to reproduce the histogram, porosity values of 8% and 12%, we will 
be inaccurate and imprecise at other predrill locations) and B. Maps without the trend after its re-
moval (realizations close to the input histogram, porosity values of 8% and 12% are present now, 
bullseyes are removed). The variogram model is implemented with diagnostics for the goodness 
of the model fit to the input data. This model has been run on all properties. G&G inputs for 
planned development wells and production prediction are sampled from these resulted modeled 
surfaces considering the trend of the data.
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Methodology

KNN is a supervised classification algorithm that gathers and groups data into K number of 

clusters.

The algorithm is used to classify different objects into groups in such a way that the similarity 

between two objects is maximal if they belong to the same group and minimal otherwise.

Regional geological data consisting of 17 G&G (i.e., geological, geophysical, petrophysical and 

geomechanical) properties of the Cocina interval underwent a cluster analysis which combines 

the 17 G&G properties into facies classes. The clustering results are four defined facies classes 

that characterize the different areas. Two of the classes (1 and 2) had the best petrophysical and 

property parameters for the Cocina interval (Figure 5).3

 

Phase 1C: Fair train-test split of spatial data in Machine Learning

Objective 

Mitigation of spatial autocorrelation for improved prediction accuracy in Machine learning 

models. Overlooking the spatial autocorrelation prevalent in our data from the optimal trend 

model can result in over optimistic models.  

Figure 5. Petrophysical and properties clustering analysis for the Cocina interval. Classes 1 and 
2 collected the best geological parameters for the interval. Map and cluster view can be prepared 
and analyzed
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Method 

The fair train-test split workflow is a novel cross-validation method for spatial predictive 

machine learning modeling that provides fair test splits with spatial prediction difficulty 

distributions (Figure 6).

Step1

The workflow applies the semi variogram model of the target to compute the simple kriging 

variance as a proxy of spatial estimation difficulty based on the spatial data configuration. 

Step 2 

The workflow employs a modified rejection sampling to generate a test set with similar 

prediction difficulty as the planned real-world use of the model...

 

Results 

Figure 7 shows the spatial configuration results or two cross validation methods, the spatial 

fair train-test split and a validation set approach for the Cocina interval. The spatial train test set 

choses different test wells to honor the spatial variance in the data set. The workflow outputs are 

training, and test sets ready for model fit and assessment with the Auto Machine learning forecast 

model. 

Figure 6. Fair train-test split of spatial data from Salazar et al., 2022.
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PHASE 2: MULTIVARIATE ANALYTICS (MVA)

Objective 

The data-driven model consisted of a multivariate analytics method that included a nonlinear 

regression model and guided transforms was used to determine how multiple independent 

predictor variables related to a single dependent response variable, in this case cumulative 

hydrocarbon production. This gives us insight into what is driving production with the output 

of feature significance plots. (Figure 10) The model will output feature significance plots through 

time, so we gain insight into what drives initial production and what drives later production 

volumes. The objective of analyzing and explaining the effect of multiple independent predictor 

variables (G&G and completion features) on the response variable: actual production, is facilitated 

by transforming the independent variables (Duolao Wang et al 2004).

The transforms give insight into the relationship of these variables. This assists in describing 

the relationships and uncovers non-linear relationships (Duolao Wang et al 2004). The transform 

algorithm is a decerning algorithm that gives more detailed information on the value ranges at 

which significant features are impactful, in this case on actual production. 

These results can be compared with the clustered facies classes to understand regional 

productivity potential. This gives insight on the effect of spatial variation on actual production. 

The transform plots can identify optimal engineering designs within the data. This information 

can be passed to the engineer to answer more granular completions questions i.e., what is the 

optimal clusters spacing and number of perforations per cluster? (Arief et al, 2022).

The objective is to complement physics-based models as spatially aware data driven models 

allow for insight away from the small region of detailed data. 

Figure 7. Regional spatial configuration results across the Vaca Muerta Play of realization for two 
cross-validation methods in the Cocina interval. Left: Spatial fair train-test split. Right: Validation 
set approach. (RW: real world).
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Methods 

We applied a multivariate analytics method to evaluate the predict twelve months of cumulative 

oil production. This data analytics method allows integration of statistical tools with geological, 

geophysical, and engineering data for predictive modeling and quantitative analysis. The MVA 

method uses an algorithm that includes a proprietary nonlinear regression (NLR) model, from a 

commercial software (Enverus), determining how multiple independent predictor variables relate 

to a single dependent response variable. 

The Enverus proprietary transform algorithm was applied to the variables. This algorithm 

operates by applying a standard normalization to the response variable by subtracting its mean 

and dividing by the standard deviation and by normalizing the predictor variables to be zero 

mean by subtracting the mean of their respective distributions. The model in this study also used a 

transforming response variable (Y) to better match the combined system of transformed predictor 

variables, θ(Y)=∑(i=1)
p [∅i (Xi)+e] where θ is a function of the response (Y), and ∅∅i are functions 

of the predictors (Xi ), i=1, …, p.

In this MVA workflow, the data is reviewed using an outlier analysis, where outliers are 

identified and removed using a non-parametric technique based on distribution smoothing and 

rejection threshold arguments (Figure 8). In this study, a full univariate analysis was done for 

each outlier candidate. Then, variables are analyzed for redundancy using a multicollinearity 

analysis that is based on a specified correlation threshold. In cases where variables are highly 

correlated, only the one with the lesser overall aggregate correlation to the others is retained. This 

is followed by analyzing the variables using a correlation table (Figure 9) where predictor and 

response variables are evaluated interactively. Then, standard and rank correlations are calculated 

for every variable pair with a customized color to denote the correlation threshold.

Figure 8. Data outlier analysis and collinearity workflow for maximum multiple correlation 
among predictor variables.
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In this study, several variables were rejected (e.g., deep resistivity, medium resistivity, VSH,) 

from the total of more than 30 variables including geological, geophysical, and engineering 

variables listed in table 1.

A model parameterization was then prepared including sample sizing and seed number 

assignments to support repeatability. The solutions were not biased to the range of the input data 

and there was enough data in the horizontals and vertical tracks within the interval of interest to 

include and avoid biasing. 

After the parameterization was completed, we performed a model correlation where the 

predicted response from the model was compared to the actual response from the input data, 

showing standard and rank correlations. The feature significance results for the 1st year of actual 

production is illustrated in Figure 10.

Finally, the model was validated using N-fold and leave-one-out cross-validation options that 

provided two methods of validation for the predictive model. The same amount of error was 

achieved in each method that conveys a well-conditioned and consistent model.

Figure 9. Data correlation table. Seventeen variables selected after the collinearity analysis to model and predict 
the last 365 days of cumulative oil production.

Figure 10. Shows  the features of significance and their sensitivty with the correlation coefficents 
for the Non-linear regression in the MVA, for the first years of actual production (Response 
varaiable). This is shown with the Facies class map from  the cluster analysis and an example 
transform plot: of youngs modulus, showing the actual values at which the feature positivily. 
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A nonlinear predictor-response relationship was analyzed to determine the optimal 

transformation that should be applied to each predictor variable. Once the functional relationships 

were established for each variable, the transformed predictor variables re-expressed the predictor-

response relationships as continuous functions that minimize error between the actual and 

predicted response variable values.

Figure 10 b. Regional production prediction: Regional  res-
ponse to transformed derived «optimal Completion» showing 
the regional variation due to variance in geological features 
significant to production.   

Results  

The key results of the MVA for insight to well optimization by understanding drivers of 

productivity away from detailed well data showed that volume of water injected and Young’s 

modulus are the most significant features during the 1st year of production. Both of these 

properties are very close in significance. This is followed by horizontal length, resistivity, and 

porosity. Proppant is seen to be less significant in early production. 

After 3 to 5 years of production the most significant features are similar, Young’s modulus, 

volume of water injected, porosity and TOC increased in significance for later production. Also, 

proppant pumped increased in significance for the 3-5 years production compared to the first year. 

A set of transformed responses were generated for all the input features. Two-fold information 

is gained from this. First in figure 10 a: an example of the transform plot for Young’s modulus is 

given, we gain more detailed information on this feature, 3.5 - 4 Gpa are the optimal value ranges 

for Young’s modulus having a positive impact on production. 

This transform plots can be combined with the Facies Class map from the KNN cluster 

workflow to see which facies classes have the optimal high significant feature and at which values 
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they positively impact production. We see in the Young’s modulus example that the Red facies 

class is the most optimal for production. 

Secondly, we can look at the best values from the transform plots for the engineering 

parameters, water injected, proppant pumped, number of stages & lateral length. We can gain an 

optimal well design from the best values in each transform. We can then predict production with 

this “optimal well design” and see regionally where uplift in production can be gained, where in 

the basin responds the most positivity, Figure 10 b. The transform plots for proppant values where 

the total amount of sand pumped are impacting production are within a of very close range with 

a limited impact on production, when compared to the total water injected volumes or horizontal 

length.

The “optimal well design” from transform plots is used to generate completion scenarios 

for the auto ML forecast and value model at a specific development plan area and passed to the 

engineers, so physics-based models are run to understanding the granularity of why increased fluid 

is highly significant to production, Cruz, et al 2021 & Arief et al, 2022. The physics-based models 

can also run scenarios that extrapolate beyond the data. 

Simulations were performed to account for the oil uplift when using the different values 

from each Transform in the model. The results indicate that a 49% oil uplift can be achieved for 

the water injected volume versus less than 20% for the sand pumped into Formation (Cruz, et al, 

2021). 

Phase 3: Auto ML forecasting model & Value Model 

Objective 

The objective was to build an automated machine learning model for forecasting prediction 

of planned development wells and to use it to investigate what an economically optimal well 

completion design could be. 

Here we wanted to integrate all the G&G, production, and completion data on a basin scale 

to forecast the production of hypothetical well locations in a development plan for an area of 

interest. A workflow was established to swiftly test varying stimulation designs evaluating the 

economics of the chosen design given the regional varying geological input. 

The final goal was then to bring the production forecast to commercial value with the 

addition of a scripted cost and economy model for economic scenario testing and optimization 

and calculation of economic metrics like well NPV, break-even and payback in years. We would 

then be able to test for the economically optimal well design throughout any license area under 

varying price scenarios in just minutes.

Figure 13 shows the full workflow. Dashboards of all the results, predicted production forecasts 
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and economic metrics were created to facilitate discussions with all disciplines (i.e., geologists, 

engineers and economists).

Method 

The Auto ML forecast model uses an XG Boost algorithm. XGBoost is a decision tree-based 

ensemble Machine Learning algorithm. XGBoost is an optimized distributed gradient boosting 

library designed to be highly efficient and flexible. Figure 11 shows the ML forecast model 

workflow. The workflow follows the typical machine learning steps: 1) Feature engineering and 

feature selection, 2) Model training, 3) model performance evaluation and finally 4) prediction. 

Feature engineering is the first step of the workflow. This allows for understanding of 

correlation and collinearity between the input G&G and engineering parameters. This is important 

so the algorithm can understand the influence of independent variables on the production and 

predict based on learning from the selected features data set.  

This step is performed using multiple methods. Principal component analysis: Pearson’s 

correlation coefficient is used for covariance and correlation coefficient to account for bivariate 

variance /covariance in linear relationship instances. The rank correlation coefficients where then 

used to relax the linear assumptions within the data and removing the sensitivity to dispersion of 

the data and then partial correlation coefficient used for understanding correlations due to the 

multivariate nonlinear nature of the data set. Finally, mutual information method was used where 

we can quantify the amount of information each feature holds, assuming independence and by 

comparing to all features. The results from these methods along with subject matter expertise were 

used to select the features to input into the model.

The next step is a classification and clustering of the input production wells of approximately 

760 horizontal wells across the basin, the algorithm is searching for similar wells or unbiased 

analogue wells based upon multiple G&G features as input to the predicted wells production. This 

output seen in Figure 12 and allows the engineer to see and evaluate the existing production wells 

that contribute to the predicted forecasts of a given well in the development plan. 

The model is tested and trained on the selected features and the models performance is 

evaluated, the main outputs of this are the mean squared error and R2 result of the prediction time 

steps, 6 months, 1 year, 2 years and 3 years predictions. Finally, a predicted forecast is generated 

for every well in the development plan of the study area. The first 3 years are prediction with 

decline curve analysis using an Arps equation pushing the forecast out to nine years. Prediction 

of EUR, 30 years production, was tested with multiple B factors, but the result was deemed too 

uncertain. The uncertainty in the nine-year forecast was +/-10%. 

Forecast predictions were generated for 13 different completion scenarios with input from the 

MVA and engineers. 
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To bring the forecast to value, a scripted economic and cost model was developed. This was 

a collaboration between the software engineer, the drilling and well engineer and the economic 

analyst. A joint model of cost and single well economy from the analysis was used to design the 

code and perform QA/QC of the model outputs. The code replicated results from the analysis 

software without any discrepancies. The code calculates the well payback time within a band 

of uncertainty and other short-term measures of value, IRR, NPV and break-even oil price. 

The production forecast outputs were linked to the cost and economy model and a dashboard 

integrating all outputs from the Auto ML forecast and value model was generated. 

In the dashboard completion scenarios could be compared, well production forecast, NPV, 

payback in years and IRR could be visualized to gain insight in the most economically viable 

optimal completion. Figure 13 shows the full workflow.

Figure 11. Auto ML forecast model workflow.

Figure 12. Planned well 2 shown in Black with contrbuiting wells to well 2 forecast prediction in red. Clasifica-
tion step: unbiased selection of similar Wells.
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Results

The following results are generalized to show major findings of the economic optimization 

of wells at the study area and does not intent to present any true value assessments of any asset.

 An auto ML forecast model was trained and tested in the area of interest to predict a production 

forecast for each hypothetical well in a development plan. Thirteen different forecast scenarios per 

well where run each with a different completion design. Stage spacing, fluid intensity, proppant 

loading and lateral length where varied. Results from the MVA showed a high significance of 

water intensity in the first and third year of production, with proppant having a lesser effect on 

production. This was supported in the auto ML forecast results and the full value model workflow 

gave insight to the economy of well completion optimization.

Figure 14 a shows the production prediction on scenarios 1 & 2. Here the number of stages, 

fluid pumped, and lateral length are kept equal, and the only difference is proppant intensity. 

Scenario 2 has 2.5 times the proppant per stage than Scenario 1. The difference map shows an 

universal uplift in production of 10-20 kbbls of oil. However, the well payback maps and the 

difference map, reveal that the increased proppant erodes value by increasing the well payback 

time by 1-2 years. Hence, a higher proppant intensity and the resulting minor increased production 

appear not to be profitable. 

Figure 14 b shows the production prediction of increased fluid intensity (scenarios 3 & 4). 

Both scenarios have the same number of stages and lateral length. Scenario 4 has 2,5 times higher 

fluid intensity and 1,3 times the proppant intensity than Scenario 3. The difference map shows 

a significant universal uplift in production by increasing fluid intensity, the central and western 

areas gain significantly in increased production with increased fluid pumped. Up to 100 KBbls oil 

increase is seen in most wells, with a minimum of 30 kbbls. The production increase leads to a 

decrease in well payback time by 1 to 2,5 years. 

Figure 13. Full Auto ML forecast and value model.
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The auto ML forecast model allows for new iterations to be run fast; based on the findings we 

can easily change the completion design and rerun or test for different oil price scenarios.

Figure 15 a & b are dummy scenario plots from the Auto ML forecast dashboard for 

illustrative purposes to demonstrate the additional information the model outputs. The results are 

hypothetical. Figure 15a shows the additional metrics derived from the cost and economic model. 

The well location dot color reflect IRR (red indicates a high IRR and green indicates a lower 

IRR). For each well we display production, break-even and NPV as function of time. Breakeven is 

penalized due to the limiting the forecast to 9 years. A low break even at 9 years will in the life of 

the well get more robust. 

Figure 14. A: Production and well payback maps for scenario 1 & 2 and difference maps. Upper and middle left picture show the 
12 months cumulative production of all hypothetical development wells for two different completion scenarios (Scenario 1 & 
2), whereas the lower left shows the production difference between the two scenarios. The right figures show the well payback in 
years for the same two scenarios and the difference. Scenarios 1 and 2 represent two completion designs with different proppant 
intensities.  
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Figure 15 b shows a shapely plot (https://en.wikipedia.org/wiki/Shapley_value). This plot 

shows the weighted average of the features (G&G & Engineering variables) contribution significance 

to production. Information on each well and which features are most significant for the resulting 

production forecast. 

The variation in production in Figure 14 a and b and shapely values in Figure 15 b reflects the 

variation in the underlying G&G properties data. The dashboards where all 13 completion scenario 

forecasts and well payback time, IRR, NPV and Break-even are compared and analyzed facilitates 

multidisciplinary discussion between geologists, engineers and economists and decision makers. 

 

 

Figure 14. B: Production and well payback maps for scenario 3 & 4 and difference maps. Scenarios 3 and 4 represent two com-
pletion designs with different fluid intensities.
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Figure 15. Figure 15 a Shows the financial information in the Auto ML forecast output dashboard. Color of dots in this picture 
reflects IRR (red is high IRR and green is low). The graphs on the top show predicted cumulative oil and gas production. The 
lower row of graphs shows Break-Even, NPV and well payback in years with uncertainty. The numbers are hypothetical and for 
illustration purposes only.
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CONCLUSIONS 

The regional MVA results showed that the most significant geological feature that drives 

production is the Young’s Modulus. The most significant engineering feature was volume of 

water pumped. Increased / high proppant volume was seen to have a much lower significance in 

Figure 15 b: Blue dots represent the well locations in the development plan, chart is a Shapley plot showing the significance of 
the G&G and engineering features that contribute to the production (Not real Values: Illustrative only).
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driving production. Lateral length and total injected fluid per unit length are identified as primary 

production drivers in both data-driven and physics-based models (Cruz et al. 2021, Arief et al. 

2022).

The facies class map from KNN clustering shows the “red” facies as the most favorable for 

geological features of high significance to production. 

The auto ML forecast and value model in the study area concurred with the MVA showing a 

significant uplift in production between the low and high-water intensity completion. This proved 

to be economically viable as the increased production with increased water volume decreased 

payback of all the wells in the development plan, the majority up to 2 years faster payback time. 

The auto ML forecast and value model also showed that higher proppant volumes had only 

a marginal uplift in production, yet this eroded the value of the wells as it increased payback time 

by 1- 2 years.  

Physics based models can be used to answer more detailed and granular completions questions 

i.e., what is the optimal clusters spacing and number of perforations per cluster? (Arief et al, 2022). 

However, physics-based models are generally time and computationally intensive and, 

depending on the degree of reservoir heterogeneity in the studied basin/reservoir, and may only 

be applicable to a small region near the studied well or pad. Spatially aware data-driven models 

give insight on parameters influencing production from the small region of detailed data. Detailed 

location and completion data for production wells would allow for calculation of the importance 

of well and clusters spacing, well interference and parent/child effects are not addressed in this 

paper but can easily implemented as features into the models.
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