11° Congreso de Exploracion y Desarrollo de Hidrocarburos
Simposio de Desarrollo de Vaca Muerta

DATA ANALYTICS AND MACHINE LEARNING WORKFLOWS FOR
OPTIMIZATION OF UNCONVENTIONAL ASSETS. CASE STUDY: NEUQUEN
BASIN, VACA MUERTA PLAY

Jests Ochoal, Lean Elizabeth Gardland?, Knut Utne Hollund?, José Julidn Salazar®39,
Michael Pyrcz*’, Haoyuan Zhang’

1: Technology, Digital and Innovation, Equinor US, Houston, USA, jocho@equinor.com
2: Exploration and Production International, Equinor ASA, Oslo, Norway, lega@equinor.com
3: Technology Digital and Innovation, Equinor ASA, Oslo, Norway, kuho@equinor.com

4: Hildebrand Department of Petroleum and Geosystems Engineering, Cockrell School of Engineering,
The University of Texas at Austin, USA, jsalazarn@austin.utexas.edu

5: Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, USA,
mpyrcz@austin.utexas.edu

6: Facultad de Ingenieria en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo
Galindo Km. 30.5 Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.

7: Technology Digital and Innovation, Equinor ASA, Oslo, Norway, hzan@equinor.com

Keywords: multivariate analytics, machine learning, integration, petroleum system, produced volumes

RESUMEN

El objetivo de este trabajo es ilustrar como los métodos avanzados de analisis de multiples variables
y aprendizaje automatico son Utiles para la mejora econémica de la productividad de pozos en el
intervalo Cocina de la Formacién Vaca Muerta, Cuenca Neuquina. Las metodologias basadas en
ciencia de datos brindan la oportunidad de aumentar la eficiencia y extraer mas detalles de extensas
bases de datos.

Todas las decisiones de campo y optimizacién se toman en presencia de incertidumbre. Debido a las
incertidumbres inherentes al campo fisico y la escasez de puntos de control, proponemos métodos
basados en datos para evaluar el impacto de diferentes parametros en la produccion. El flujo de
trabajo se compone de anélisis de datos junto con métodos de aprendizaje automatico supervisados
y NO supervisados.

Primero: Se implementa una fase de analisis espacial, mejorando el rigor estadistico de los parametros
de entrada para la prediccion usando aprendizaje automatico al tiempo que se respeta el contexto
espacial de los datos del subsuelo. El flujo de trabajo incluye identificacion de anomalias espaciales,
deteccion, valores atipicos de datos espaciales, problemas de calidad de datos y modelado de
tendencias optimas.

Siguiente: Un anélisis de mdultiples variables en la zona de perforacion de interés. El modelo usa
datos solo de este intervalo con el objetivo de determinar las caracteristicas de alto impacto y en qué
rangos de valor estas caracteristicas gobiernan la productividad del pozo. Cuantificar y clasificar la
importancia de todas las caracteristicas geoldgicas, geofisicas y de ingenieria disponibles permite
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realizar pruebas iterativas rapidas de diferentes disefios de produccion. Los modelos basados en
datos se calibran con modelos basados en la fisica (Cruz, et al 2021 y presentacion de colegas de
Equinor en CONEXPLO22 por Arief et al).

Finalmente: Una prediccion usando aprendizaje automatico (ML) para pozos futuros vinculada a un
modelo econémico que proporciona parametros comerciales como: tiempo de recobro de inversion
para cada pozo y cobertura de gastos en un corto plazo. El modelo de prondstico de aprendizaje
automatico utiliza todo el conjunto de datos de produccién de la Formacion Vaca Muerta del
Capitulo IV como analogo a la prediccion de produccion. El objetivo de este paso final es modelar
la optimizacién econémica produciendo un pronéstico para cada pozo para un plan de desarrollo,
brindando la capacidad de evaluar multiples escenarios y cientos de iteraciones. Consulte la Figura 1:
Flujo de trabajo completo basado en datos.
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Figure 1. Data analytics workflows for optimization of unconventional asset. Novel spatial analytics techniques,
handling the G&G input data -Clustering Techniques-Multivariate analysis: What’s driving production? Testing
completion scenarios: Machine learning multi scenario forecasting and well payback model.

INTRODUCTION

We propose a data driven, end-to-end workflow that integrates all the data. Geological and
geophysical data, with spatial analytics applied to honor the spatial context of the data. This is
combined with engineering, production, financial and cost data as a means of extending the
current modeling capabilities and enhancing the current decision workflow practices.

The workflow facilitates understanding influential drivers on well productivity, understood
by using Multivariate analysis and the impact of geospatial variations, what happens when we
move away from a known well bore? This is understood using semi-variograms in 2D modeling
(Optimal trend model) and semi-supervised Machine learning clustering techniques to generate
facies maps, for a consistent reservoir quality comparison across the basin of all G&G properties
combined to define facies classes. (Figure 5).

The aim of this is gaining insight into well completion optimization. and knowledge for

well spacing considerations- We can also gain knowledge on what impacts payback time (time
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to 100% return on investment). Multivariate analysis gives insight, to the impact of engineering
and geological variables over time, e.g., what was significant in the first years and what drives
production in the later years of field development (Figure 10), assisting with optimization of
shortest well payback time and development sequences.

Our focus is data-driven characterization of the subsurface. We build practical automated
workflows for subsurface data analysis and predictive machine learning.

Data science capabilities allow our physics-based models to be augmented, with spatial
analytics, non-supervised, supervised machine learning techniques, and multivariate analysis.

Unconventional dynamic systems pose the challenge of nonlinearity of properties and high
dimensionality within the data sets, the many properties also have noise and are stochastic of
nature. Machine learning is a good technique for overcoming these challenges as it supports
prediction and inference in multivariate and complex data sets. Our data driven models are
calibrated to physics-based models. In the paper, Cruz, et. al., 2021 physics-based, and data-
driven models were seen as complementary to each other’s short comings. The final physics-based
models are better equipped, compared to data-driven models, to predict behaviors in situations
where large amounts of spatially distributed data are not available. Physics-based models can
be used to answer more detailed and granular completions questions i.e., what is the optimal
clusters spacing and number of perforations per cluster? (Arief et. al., 2022) However, physics-
based models are generally time and computationally intensive and, depending on the degree of
reservoir heterogeneity in the studied basin/reservoir, may only be applicable to a small region
near the studied well or pad. Spatially aware data-driven models allow for insight away from the
small region of detailed data.

Combining the physics-based and data-driven modeling provide an opportunity to bridge
the data and physical understanding gaps to improve accuracy of production forecasts and
completions optimization. Digital driven automation of forecasting models tackles the issue of
bias in forecasting to avoid misallocation of capital. Data-driven forecasting generates prediction
updates at speed.

The vehicle for automated workflow is a scripting / coding solution. When you automate
workflows there are many gains:

1. All data types can be analyzed and integrated, all geological and geophysical properties
(geomechanical, geochemical) not just STOOIP inputs. Completion parameters, cost
data, and economic data. If all this information is taken out of context, we could mislead
decision making / field optimization.

2. Size of data set is not an obstacle; 100-1,000 wells can be analyzed. Scaling information
input means we can learn from all (currently approximately 1,200) horizontal producers
in the Vaca Muerta Formation. Legacy software does not allow for this level of data

integration.
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3. Automation leads to efficiency: multiple scenarios can be run fast & repeatable, varying
completion parameters, costs & oil price, outputting forecast iterations fast and testing for
optimization. An obvious gain is a higher resolution of information, a forecast for every
well in the development plan versus one type-curve per area. Geoscientists and engineers
can focus simulation time on scenarios that add value.

4. Multiple scenarios facilitate an uncertainty centric workflow, representing a span of possible
outcomes rather than a few single scenarios. Figure 2 demonstrate the degree of flexibility,
in evaluating optimal completions scenarios. For the license area in figure 2, thirteen
different completion scenarios where tested, and a predicted forecast generated for every
well in the development plan, these scenarios can be compared, figure 2 also shows the
resulting 12 months cumulative production if the worst performing completion for each
well is chosen (image on the left) and the resulting 12 months cumulative production if
the best performing completion is selected for each well from the 13-scenario combination
(Figure on the Right).
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Figure 2.Illustrates the flexibility of the automated workflow13 completion scenarios where run on the
reservoir interval of the study area, resulting in a production forecast for every well in the development
plan , the image shows the 12 months cum production result from a mix of the 13 completion in the
lowest/ minimum 12 month cum production attained, image on the left, and the completion scenarios
for each well that resulted in the maximum 12 month cum production prediction image on the right.

The workflow is broken into three major phases

1. Spatial analytics:
This step improves that statistical rigor of predictive ML models:
* 1A: Optimal Trend modeling workflow:

Removes the disconnect of geological and geophysical (G&G) parameters variability from

engineering to better honor the spatial context, autocorrelation and variance of G&G
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properties. 2D models of the geological properties are generated using GeoModeling
principles such as semi-variograms and sequential gaussian simulation.

« 1B: KNN (k-Nearest Neighbors algorithm) a clustering analysis for the interval of interest
across the whole basin. Consistent reservoir quality comparison of all G&G properties
combined to define facies classes.

+ 1C: Fair test train split of spatial data in ML prediction models:

Model input data is spatially related, the workflow offers spatial aware data sets ready for

predictive machine learning problems (Salazar, ez a/ 2022).

2. Multi Variate Analysis: (MVA):

Understand bivariate and advanced multivariate correlations and collinearity. Ranking and
properties significance of G&G and completion properties on well productivity at time intervals:
e.g., 1 year & 3 years. The results of the MVA models are then calibrated to physics-based models
(Cruz et al, 2021; Arief et al., 2022).

3. Auto ML forecasting model & Value Model:

Automated planned well production forecasting for every well in the development plan, with
uncertainty, combining cost and economic models for single well payback & short-term measures
of value outputs: breakeven, IRR & NPV. The automatic workflow allows for testing multiple
completion scenario for well optimization all the way to economics. Completion scenarios are
chosen using the results of the MVA analysis and subject matter expert input, this allows to output
9-year production profile; 3 to 5 years predictions on cumulative production or 5 to 8 years

decline curve analysis.

DATA INPUT

Equinor’s inhouse regional database was used, petrophysical logs and basin analysis models.

Production and completion data are from the Chapter IV public database.

The Production and completion data was downloaded from the Argentinian Energy
Department (AED) (Repositorio oficial del Equipo de datos del Ministerio de Energia y Mineria
de la Republica Argentina). The github address is the following: https://github.com/datosminem/
produccion-de-petroleo-y-gas-por-pozo.

Production wells from 2009 to present day with greater than 500m lateral length where used,
approximately 730 wells. Equinor Petrophysical database included approximately 130 vertical

pilot wells across the basin.
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One target zone was analyzed in the MVA and Machine learning forecast and value model.

If proprietary data was used the model’s accuracy would improve, exact target zones of the
production wells would be understood and insightful features such as number of clusters/ clusters
spacing and well spacing could be calculated and added to the models.

The MVA model had petrophysical data from an additional approximately 100 horizontal
wells. The 2D modeling, optimal trend model, was generated for each petrophysical feature as
input to the MVA model and Machine learning forecast and value model: G&G information
sampled at the production well location from the model.

Table 1 shows the input properties to the data driven models. Of a total of 16 initial G&G

parameters, 7 were rejected in the final models test and train phase, due to collinearity and/or data

quality.

G&G Properties MVA Regional
Model

G&G Properties
ML forecast Model

Completion
Properties

Production
properties

TOC

Youngs Modulus
Top of zone

Base of zone
Porosity
Thickness
Saturation

Pore pressure
Pressure gradient

TOC
Youngs Modulus
Top of zone
Base of zone
Porosity
Thickness
Saturation
Pore pressure
Pressure gradient

Number of stages
Lateral lenght
Propannt Pumped
Fluid pumped

Monthly Volumes

GOR

Sonic Potenial Log Measurments
Sonic log Measurments

Denisty Log Measurments

Deep Resitivity Log Measurments
Medium Resitivity Log Measurments
Shallow Resitivity Log Measurments

Table 1: G&G Properties used in Regional MVA model & ML Forecast
& Value model Completion properties used in both models along with
Actual monthly production volumes.

PHASE 1: SPATIAL ANALYTICS

Several spatial analytics workflows that can be stand alone have been generated. The workflows
used included an initial optimal trend modeling, KNN Clustering, fair train-test split of spatial
data for ML models.

Phase 1A - Optimal trend model

The objective for the development of the optimal trend model is to address uncertainty
of properties at unknown well locations and produce robust 2D models of G&G properties.
Geological data present challenges for mapping; data paucity is dominant; presence of trends
and spatial correlation need to be honored. Many off-the-shelf techniques assume the data are

independent and identically distributed, but real geological phenomena present trends. Neglecting
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the spatial continuity and inherent data paucity can produce unreliable uncertainty models and
impair decision making. The optimal trend model is an innovative approach that combines data
analytics, geostatistics, and optimization techniques to provide a workflow to analyze 2D datasets
and produce models that are reliable to sample planed production well locations to feed G&G
data into the Auto ML forecast prediction model (Salazar ez al, 2022).

Spatial model includes multiple realizations to access uncertainty and the primary feature can
be modeled and co-simulated with features that hold a strong correlation, this can include data
from seismic surfaces, modelled surface results from basin models, or surfaces derived from well
data.

Methodology
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Figure 3. Optimal Trend model workflow combines data analytics, geostatis-
tics and optimization techniques that provides a standalone workflow for 2D
modeling from Salazar et al, 2022.

Step 1: Outlier Detection

The workflow uses several algorithms to identify outliers for removal. Mahalanobis distance is
used and a confidence interval to advise data points that could be outliers based on their location
and a confidence interval, next an algorithm that classifies the samples three standard deviations
away from the mean as outliers. Then the isolation forest algorithm which categorizes an instance
as an outlier by measuring its predisposition to being isolated. Another algorithm used is the
elliptic envelope that assumes the data follows a Gaussian distribution and measures the distance
of the samples to the central samples to estimate their outlier degree. Finally, the last algorithm

is the local outlier factor that uses the distances from each sample to its k-nearest neighbors to
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compute a local density and classifies as outliers’ samples that have a smaller neighbor density

than their k-nearest neighbors.

Step 2: Plotting the experimental semi variograms

This indicates the presence of trends in the data sets, the results are generation of directional
semi-variograms and variogram maps, this will depict the trend for the feature being modeled and/
or co-simulated.

Optimization is in place using a Gaussian window and an evolutionary algorithm (Salazar,

et al 2022), finding the optimal dimensions of the Gaussian window equivalent to the grid cells.

Step 3: Identify the direction, azimuth of maximum spatial continuity using a Bayesian

optimization.

Step 4: Model the 2D variogram using evolutionary algorithms for optimization of the
nugget effect, so the nugget effect and the variance contributions add up, to evaluate the

goodness of the semi-variogram model fit.

Step 5: Perform sequential Gaussian simulation: (SGS)

SGS overcome limitations that exist with kriging, Kriged maps are deterministic and therefore
incompatible with uncertainty analysis. (Jensen ez al., 2000; Journal et al., 2000). SGS create

stochastic realizations in reservoir modeling that reproduce the global distribution.

Step 6: Co-simulation

Understanding feature correlation allows for modeling of the subsurface with analysis of
more than one feature. The cosimulation method used collocated cokriging to prioritize the
reproduction of the primary feature’s histogram and variogram while maintaining the Pearson’s
correlation coefficient with the collocated secondary feature. For cosimulation, the algorithm
requires the realizations from the secondary feature, the variance reduction factor using Bayesian

optimization is applied.

Results: Output diagnostics

The optimal trend workflow outputs are solving two of the major issues we encounter when

working with geological or geophysical properties; first we either underestimate or overestimate
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the property values and second the resulting uncertainties are too wide since the trends are still
present in the data, violating the stationary assumption of the sequential gaussian simulation
approach. The workflow automates the semi-variogram definition, model the trend in the data
so we can remove it and correctly apply a sequential gaussian simulation on data that is now
stationary. Furthermore, the uncertainty is within range and the realizations are now close to the
input histogram. 2D uncertainty maps of the realizations are calculated for P10, P50, and P90 but
more realizations can also be added as needed. Finally, a local probability of exceedance map is

calculated to better visualize the risk and uncertainty for the property under analysis.

Porosity_Percertage Bif

X (m)

Purgsity_Percantage P10

.N

Figure 4.A & B Outputs from the optimal trend model of Porosity. A. Maps with trend overfitting
the property (realizations fail to reproduce the histogram, porosity values of 8% and 12%, we will
be inaccurate and imprecise at other predrill locations) and B. Maps without the trend after its re-
moval (realizations close to the input histogram, porosity values of 8% and 12% are present now,
bullseyes are removed). The variogram model is implemented with diagnostics for the goodness
of the model fit to the input data. This model has been run on all properties. G&G inputs for
planned development wells and production prediction are sampled from these resulted modeled
surfaces considering the trend of the data.

B. Optimum trend

Phase 1B: KNN clustering analysis for the whole basin or the interval of interest
Objective

The objective of non-supervised machine learning technique of KNN clustering is to integrate
all G&G properties data into a consistent comparable basis. This allows for regional reservoir
quality analysis. The cluster results and, facies map, can be used in conjunction with the features
of significance & transform plots, understanding influential drivers on well production, and the
values at which they are significant, in the MVA part of the workflow, to understand the gross

regional spatial variations of significant features.
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Methodology

KNN is a supervised classification algorithm that gathers and groups data into K number of
clusters.

The algorithm is used to classify different objects into groups in such a way that the similarity
between two objects is maximal if they belong to the same group and minimal otherwise.

Regional geological data consisting of 17 G&G (i.e., geological, geophysical, petrophysical and
geomechanical) properties of the Cocina interval underwent a cluster analysis which combines
the 17 G&G properties into facies classes. The clustering results are four defined facies classes
that characterize the different areas. Two of the classes (1 and 2) had the best petrophysical and

property parameters for the Cocina interval (Figure 5).3

Cluster analysis: Regional Geological data of COCINA 17 G&G properties
clustered into 4 facies classes
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Figure 5. Petrophysical and properties clustering analysis for the Cocina interval. Classes 1 and
2 collected the best geological parameters for the interval. Map and cluster view can be prepared
and analyzed

Phase 1C: Fair train-test split of spatial data in Machine Learning
Objective
Mitigation of spatial autocorrelation for improved prediction accuracy in Machine learning

models. Overlooking the spatial autocorrelation prevalent in our data from the optimal trend

model can result in over optimistic models.
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Method

The fair train-test split workflow is a novel cross-validation method for spatial predictive
machine learning modeling that provides fair test splits with spatial prediction difficulty
distributions (Figure 6).

Stepl

The workflow applies the semi variogram model of the target to compute the simple kriging

variance as a proxy of spatial estimation difficulty based on the spatial data configuration.
Step 2

The workflow employs a modified rejection sampling to generate a test set with similar

prediction difficulty as the planned real-world use of the model...
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Figure 6. Fair train-test split of spatial data from Salazar ez al., 2022.

Figure 7 shows the spatial configuration results or two cross validation methods, the spatial
fair train-test split and a validation set approach for the Cocina interval. The spatial train test set
choses different test wells to honor the spatial variance in the data set. The workflow outputs are
training, and test sets ready for model fit and assessment with the Auto Machine learning forecast

model.
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Figure 7. Regional spatial configuration results across the Vaca Muerta Play of realization for two
cross-validation methods in the Cocina interval. Left: Spatial fair train-test split. Right: Validation
set approach. (RW: real world).

PHASE 2: MULTIVARIATE ANALYTICS (MVA)
Objective

The data-driven model consisted of a multivariate analytics method that included a nonlinear
regression model and guided transforms was used to determine how multiple independent
predictor variables related to a single dependent response variable, in this case cumulative
hydrocarbon production. This gives us insight into what is driving production with the output
of feature significance plots. (Figure 10) The model will output feature significance plots through
time, so we gain insight into what drives initial production and what drives later production
volumes. The objective of analyzing and explaining the effect of multiple independent predictor
variables (G&G and completion features) on the response variable: actual production, is facilitated
by transforming the independent variables (Duolao Wang et al 2004).

The transforms give insight into the relationship of these variables. This assists in describing
the relationships and uncovers non-linear relationships (Duolao Wang ez al 2004). The transform
algorithm is a decerning algorithm that gives more detailed information on the value ranges at
which significant features are impactful, in this case on actual production.

These results can be compared with the clustered facies classes to understand regional
productivity potential. This gives insight on the effect of spatial variation on actual production.

The transform plots can identify optimal engineering designs within the data. This information
can be passed to the engineer to answer more granular completions questions i.e., what is the
optimal clusters spacing and number of perforations per cluster? (Arief e al, 2022).

The objective is to complement physics-based models as spatially aware data driven models

allow for insight away from the small region of detailed data.
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Methods

We applied a multivariate analytics method to evaluate the predict twelve months of cumulative
oil production. This data analytics method allows integration of statistical tools with geological,
geophysical, and engineering data for predictive modeling and quantitative analysis. The MVA
method uses an algorithm that includes a proprietary nonlinear regression (NLR) model, from a
commercial software (Enverus), determining how multiple independent predictor variables relate
to a single dependent response variable.

The Enverus proprietary transform algorithm was applied to the variables. This algorithm
operates by applying a standard normalization to the response variable by subtracting its mean
and dividing by the standard deviation and by normalizing the predictor variables to be zero
mean by subtracting the mean of their respective distributions. The model in this study also used a
transforming response variable (Y) to better match the combined system of transformed predictor
variables, 6(Y)=Z(i=1)P [, (X,)+€] where 0 is a function of the response (Y), and . are functions
of the predictors (X. ), i=1, ..., p.

In this MVA workflow, the data is reviewed using an outlier analysis, where outliers are
identified and removed using a non-parametric technique based on distribution smoothing and
rejection threshold arguments (Figure 8). In this study, a full univariate analysis was done for
each outlier candidate. Then, variables are analyzed for redundancy using a multicollinearity
analysis that is based on a specified correlation threshold. In cases where variables are highly
correlated, only the one with the lesser overall aggregate correlation to the others is retained. This
is followed by analyzing the variables using a correlation table (Figure 9) where predictor and
response variables are evaluated interactively. Then, standard and rank correlations are calculated

for every variable pair with a customized color to denote the correlation threshold.
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Figure 8. Data outlier analysis and collinearity workflow for maximum multiple correlation
among predictor variables.
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Correlation Table 1 | Data Comelations (144)
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Figure 9. Data correlation table. Seventeen variables selected after the collinearity analysis to model and predict
the last 365 days of cumulative oil production.

In this study, several variables were rejected (e.g., deep resistivity, medium resistivity, VSH,)
from the total of more than 30 variables including geological, geophysical, and engineering
variables listed in table 1.

A model parameterization was then prepared including sample sizing and seed number
assignments to support repeatability. The solutions were not biased to the range of the input data
and there was enough data in the horizontals and vertical tracks within the interval of interest to
include and avoid biasing.

After the parameterization was completed, we performed a model correlation where the
predicted response from the model was compared to the actual response from the input data,
showing standard and rank correlations. The feature significance results for the 1st year of actual
production is illustrated in Figure 10.

Finally, the model was validated using N-fold and leave-one-out cross-validation options that
provided two methods of validation for the predictive model. The same amount of error was

achieved in each method that conveys a well-conditioned and consistent model.
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Figure 10. Shows the features of significance and their sensitivty with the correlation coefficents
for the Non-linear regression in the MVA, for the first years of actual production (Response
varaiable). This is shown with the Facies class map from the cluster analysis and an example
transform plot: of youngs modulus, showing the actual values at which the feature positivily.
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A nonlinear predictor-response relationship was analyzed to determine the optimal
transformation that should be applied to each predictor variable. Once the functional relationships
were established for each variable, the transformed predictor variables re-expressed the predictor-
response relationships as continuous functions that minimize error between the actual and

predicted response variable values.

Low Regional Production prediction

Response to transformed derived « optimal Completion» showing the
regional variation due to variance in geological features significant to production

Figure 10 b. Regional production prediction: Regional res-
ponse to transformed derived «optimal Completion» showing
the regional variation due to variance in geological features
significant to production.

Results

The key results of the MVA for insight to well optimization by understanding drivers of
productivity away from detailed well data showed that volume of water injected and Young’s
modulus are the most significant features during the 1st year of production. Both of these
properties are very close in significance. This is followed by horizontal length, resistivity, and
porosity. Proppant is seen to be less significant in early production.

After 3 to 5 years of production the most significant features are similar, Young’s modulus,
volume of water injected, porosity and TOC increased in significance for later production. Also,
proppant pumped increased in significance for the 3-5 years production compared to the first year.

A set of transformed responses were generated for all the input features. Two-fold information
is gained from this. First in figure 10 a: an example of the transform plot for Young’s modulus is
given, we gain more detailed information on this feature, 3.5 - 4 Gpa are the optimal value ranges
for Young’s modulus having a positive impact on production.

This transform plots can be combined with the Facies Class map from the KNN cluster

workflow to see which facies classes have the optimal high significant feature and at which values
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they positively impact production. We see in the Young’s modulus example that the Red facies
class is the most optimal for production.

Secondly, we can look at the best values from the transform plots for the engineering
parameters, water injected, proppant pumped, number of stages & lateral length. We can gain an
optimal well design from the best values in each transform. We can then predict production with
this “optimal well design” and see regionally where uplift in production can be gained, where in
the basin responds the most positivity, Figure 10 b. The transform plots for proppant values where
the total amount of sand pumped are impacting production are within a of very close range with
a limited impact on production, when compared to the total water injected volumes or horizontal
length.

The “optimal well design” from transform plots is used to generate completion scenarios
for the auto ML forecast and value model at a specific development plan area and passed to the
engineers, so physics-based models are run to understanding the granularity of why increased fluid
is highly significant to production, Cruz, ez a/ 2021 & Arief et al, 2022. The physics-based models
can also run scenarios that extrapolate beyond the data.

Simulations were performed to account for the oil uplift when using the different values
from each Transform in the model. The results indicate that a 49% oil uplift can be achieved for
the water injected volume versus less than 20% for the sand pumped into Formation (Cruz, et 4l,
2021).

Phase 3: Auto ML forecasting model & Value Model

Objective

The objective was to build an automated machine learning model for forecasting prediction
of planned development wells and to use it to investigate what an economically optimal well
completion design could be.

Here we wanted to integrate all the G&G, production, and completion data on a basin scale
to forecast the production of hypothetical well locations in a development plan for an area of
interest. A workflow was established to swiftly test varying stimulation designs evaluating the
economics of the chosen design given the regional varying geological input.

The final goal was then to bring the production forecast to commercial value with the
addition of a scripted cost and economy model for economic scenario testing and optimization
and calculation of economic metrics like well NPV, break-even and payback in years. We would
then be able to test for the economically optimal well design throughout any license area under
varying price scenarios in just minutes.

Figure 13 shows the full workflow. Dashboards of all the results, predicted production forecasts
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and economic metrics were created to facilitate discussions with all disciplines (i.e., geologists,

engineers and economists).

Method

The Auto ML forecast model uses an XG Boost algorithm. XGBoost is a decision tree-based
ensemble Machine Learning algorithm. XGBoost is an optimized distributed gradient boosting
library designed to be highly efficient and flexible. Figure 11 shows the ML forecast model
workflow. The workflow follows the typical machine learning steps: 1) Feature engineering and
feature selection, 2) Model training, 3) model performance evaluation and finally 4) prediction.

Feature engineering is the first step of the workflow. This allows for understanding of
correlation and collinearity between the input G&G and engineering parameters. This is important
so the algorithm can understand the influence of independent variables on the production and
predict based on learning from the selected features data set.

This step is performed using multiple methods. Principal component analysis: Pearson’s
correlation coefficient is used for covariance and correlation coefficient to account for bivariate
variance /covariance in linear relationship instances. The rank correlation coefficients where then
used to relax the linear assumptions within the data and removing the sensitivity to dispersion of
the data and then partial correlation coefficient used for understanding correlations due to the
multivariate nonlinear nature of the data set. Finally, mutual information method was used where
we can quantify the amount of information each feature holds, assuming independence and by
comparing to all features. The results from these methods along with subject matter expertise were
used to select the features to input into the model.

The next step is a classification and clustering of the input production wells of approximately
760 horizontal wells across the basin, the algorithm is searching for similar wells or unbiased
analogue wells based upon multiple G&G features as input to the predicted wells production. This
output seen in Figure 12 and allows the engineer to see and evaluate the existing production wells
that contribute to the predicted forecasts of a given well in the development plan.

The model is tested and trained on the selected features and the models performance is
evaluated, the main outputs of this are the mean squared error and R2 result of the prediction time
steps, 6 months, 1 year, 2 years and 3 years predictions. Finally, a predicted forecast is generated
for every well in the development plan of the study area. The first 3 years are prediction with
decline curve analysis using an Arps equation pushing the forecast out to nine years. Prediction
of EUR, 30 years production, was tested with multiple B factors, but the result was deemed too
uncertain. The uncertainty in the nine-year forecast was +/-10%.

Forecast predictions were generated for 13 different completion scenarios with input from the

MVA and engineers.
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Figure 12. Planned well 2 shown in Black with contrbuiting wells to well 2 forecast prediction in red. Clasifica-
tion step: unbiased selection of similar Wells.

To bring the forecast to value, a scripted economic and cost model was developed. This was
a collaboration between the software engineer, the drilling and well engineer and the economic
analyst. A joint model of cost and single well economy from the analysis was used to design the
code and perform QA/QC of the model outputs. The code replicated results from the analysis
software without any discrepancies. The code calculates the well payback time within a band
of uncertainty and other short-term measures of value, IRR, NPV and break-even oil price.
The production forecast outputs were linked to the cost and economy model and a dashboard
integrating all outputs from the Auto ML forecast and value model was generated.

In the dashboard completion scenarios could be compared, well production forecast, NPV,
payback in years and IRR could be visualized to gain insight in the most economically viable

optimal completion. Figure 13 shows the full workflow.
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Figure 13. Full Auto ML forecast and value model.

Results

The following results are generalized to show major findings of the economic optimization
of wells at the study area and does not intent to present any true value assessments of any asset.

An auto ML forecast model was trained and tested in the area of interest to predict a production
forecast for each hypothetical well in a development plan. Thirteen different forecast scenarios per
well where run each with a different completion design. Stage spacing, fluid intensity, proppant
loading and lateral length where varied. Results from the MVA showed a high significance of
water intensity in the first and third year of production, with proppant having a lesser effect on
production. This was supported in the auto ML forecast results and the full value model workflow
gave insight to the economy of well completion optimization.

Figure 14 a shows the production prediction on scenarios 1 & 2. Here the number of stages,
fluid pumped, and lateral length are kept equal, and the only difference is proppant intensity.
Scenario 2 has 2.5 times the proppant per stage than Scenario 1. The difference map shows an
universal uplift in production of 10-20 kbbls of oil. However, the well payback maps and the
difference map, reveal that the increased proppant erodes value by increasing the well payback
time by 1-2 years. Hence, a higher proppant intensity and the resulting minor increased production
appear not to be profitable.

Figure 14 b shows the production prediction of increased fluid intensity (scenarios 3 & 4).
Both scenarios have the same number of stages and lateral length. Scenario 4 has 2,5 times higher
fluid intensity and 1,3 times the proppant intensity than Scenario 3. The difference map shows
a significant universal uplift in production by increasing fluid intensity, the central and western
areas gain significantly in increased production with increased fluid pumped. Up to 100 KBbls oil
increase is seen in most wells, with a minimum of 30 kbbls. The production increase leads to a

decrease in well payback time by 1 to 2,5 years.
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The auto ML forecast model allows for new iterations to be run fast; based on the findings we
can easily change the completion design and rerun or test for different oil price scenarios.

Figure 15 a & b are dummy scenario plots from the Auto ML forecast dashboard for
illustrative purposes to demonstrate the additional information the model outputs. The results are
hypothetical. Figure 15a shows the additional metrics derived from the cost and economic model.
The well location dot color reflect IRR (red indicates a high IRR and green indicates a lower
IRR). For each well we display production, break-even and NPV as function of time. Breakeven is
penalized due to the limiting the forecast to 9 years. A low break even at 9 years will in the life of

the well get more robust.

|
'|
|
High
R |

Senario 1

Production
i
¥
L

Low

[ ]

Cum Oil production 12 Months: Lower proppant intensity Well Pay Back in Years

R |
High

|
|

Senario 2 S

Production
{

Low

) L]

Cum Oil production 12 Months higher proppant intensity x 2.5 Well Pay Back in Years

¥ '
|
i
|
- om
High
i
i
P
o

Difference -
maps TN

Production

L)
[
Low

-]
[

Production Difference Map: Cum Oil 12 Months Well Pay Back in Years Difference

Figure 14. A: Production and well payback maps for scenario 1 & 2 and difference maps. Upper and middle left picture show the
12 months cumulative production of all hypothetical development wells for two different completion scenarios (Scenario 1 &
2), whereas the lower left shows the production difference between the two scenarios. The right figures show the well payback in
years for the same two scenarios and the difference. Scenarios 1 and 2 represent two completion designs with different proppant
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Figure 14. B: Production and well payback maps for scenario 3 & 4 and difference maps. Scenarios 3 and 4 represent two com-
pletion designs with different fluid intensities.

Figure 15 b shows a shapely plot (https://en.wikipedia.org/wiki/Shapley_value). This plot
shows the weighted average of the features (G&G & Engineering variables) contribution significance
to production. Information on each well and which features are most significant for the resulting
production forecast.

The variation in production in Figure 14 a and b and shapely values in Figure 15 b reflects the
variation in the underlying G&G properties data. The dashboards where all 13 completion scenario
forecasts and well payback time, IRR, NPV and Break-even are compared and analyzed facilitates

multidisciplinary discussion between geologists, engineers and economists and decision makers.
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Figure 15. Figure 15 a Shows the financial information in the Auto ML forecast output dashboard. Color of dots in this picture
reflects IRR (red is high IRR and green is low). The graphs on the top show predicted cumulative oil and gas production. The
lower row of graphs shows Break-Even, NPV and well payback in years with uncertainty. The numbers are hypothetical and for
illustration purposes only.
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Figure 15 b: Blue dots represent the well locations in the development plan, chart is a Shapley plot showing the significance of
the G&G and engineering features that contribute to the production (Not real Values: Illustrative only).

CONCLUSIONS

The regional MVA results showed that the most significant geological feature that drives
production is the Young’s Modulus. The most significant engineering feature was volume of

water pumped. Increased / high proppant volume was seen to have a much lower significance in
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driving production. Lateral length and total injected fluid per unit length are identified as primary
production drivers in both data-driven and physics-based models (Cruz et al. 2021, Arief et al.
2022).

The facies class map from KNN clustering shows the “red” facies as the most favorable for
geological features of high significance to production.

The auto ML forecast and value model in the study area concurred with the MVA showing a
significant uplift in production between the low and high-water intensity completion. This proved
to be economically viable as the increased production with increased water volume decreased
payback of all the wells in the development plan, the majority up to 2 years faster payback time.

The auto ML forecast and value model also showed that higher proppant volumes had only
a marginal uplift in production, yet this eroded the value of the wells as it increased payback time
by 1- 2 years.

Physics based models can be used to answer more detailed and granular completions questions
i.e., what is the optimal clusters spacing and number of perforations per cluster? (Arief ez al, 2022).

However, physics-based models are generally time and computationally intensive and,
depending on the degree of reservoir heterogeneity in the studied basin/reservoir, and may only
be applicable to a small region near the studied well or pad. Spatially aware data-driven models
give insight on parameters influencing production from the small region of detailed data. Detailed
location and completion data for production wells would allow for calculation of the importance
of well and clusters spacing, well interference and parent/child effects are not addressed in this

paper but can easily implemented as features into the models.
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